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AHEOT~~HSI-II~EIBO~MTCJX pemeHHe pfqa :jaaas ecrecrsewoti KoHBeKq5w B Hecww+Iaeivoti 
BIISKOti HWAKOCTH B 3JIeMeHTapHbIX MaKpOKaFIWUIJ?paX Ilpll HeOAHOPOAHOM PaCIIpeAeJIeHAn 

TeMnepaTypbl Ha rpawqe. n0~~106~0 Ifayverla wpywrypa TeYeHnH WIAKOCTPI II Bmmme 

MaI-HHTHOrO IIOJIR Ha KOHBeKIJHIO B CJIyqae IlpOBOAHLL(efiH(IIAKOCTII. AaeTCH OQeHKa BJIllRHUlI 

CBOi%CTB M3KpOKaIlEUlJIHpa Ha CTpyKTypy TeYeBIIR, BWIWMHJ’ KOHBeKTABHO# CKOPOCTA El 

pacnpeAeneane TehfnepaTypbr. 

NOMENCLATURE 

1, length of molecular mean free path ; 

h, radius of capillary ; 

% v, velocity components ; 

VA stream function; 

P, pressure ; 

P, density; 

T temperature ; 
T W’ temperature of walls ; 

V, kinematic viscosity ; 

x, thermal diffusivity; 

: 
sound velocity in gas; 
wave number ; 

6 temperature gradient along axis y ; 

Pr, Prandtl number ; 

M Hartman number; 
P 
G;: 

magnetic Reynolds number; 
Grashof number ; 

H, magnetic field ; 
H,, H,, h,, components of variable portion of magnetic field. 

THE STUDY of free convection in capillary-porous bodies under nonisothermal conditions is of great 
interest. Transfer phenomena in capillary-porous bodies are characterized by some peculiarities 
connected with the value of the ratio of the mean free molecular path I to the capillary radius h [l]. 
If the capillary radius h is of the order of the mean free molecular path l(h - lo-’ m for air), then the 
transfer laws depend on free-molecular conditions and should be caculated using kinetic concepts. 
This is the case of a highly rarefied gas. If the value l/h is in comparison to unity (weakly rarefied gas), 
heat transfer processes can be treated in a macroscopic way. In this representation the usual state- 
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ment of the problem should be somewhat altered. In the equations of motion and of state the correc- 
tion terms are extremely small and will be neglected in further considerations [l]. However the 
boundary conditions on the solid surface require fundamental consideration. The derivation of new 
macroscopic conditions is carried out with the help of kinetic representation [3]. 

In hydrodynamics the conditions of adhesion are usually assumed i.e. it is considered that the 
velocity and temperature of the gas at the wall are equal to the velocity and temperature of the wall. 
New boundary conditions allow for jumps in the tangential components of the velocity and tem- 
perature which are proportional to normal derivatives of these values in the Navier-Stokes approxi- 
mation. 

In the present paper the problem is formulated and solved on natural convection in a macro- 
capillary at l/h < 1 and nonuniform temperature distribution at the boundary. Particular attention 
is paid to elucidation of the effect of slip conditions and temperature jump on the flow structure in a 
macropore. One of the simplest capillary models, horizontal capillary slits with geometric dimension 
h, is considered. 

The Cartesian system of coordinates x, y is employed. The walls coincide with the planes y = 0 
and y = h. The gravity field is in the positive direction of the axis y. Let u, u be the velocity components 
along the axes x, y; p, p, T are pressure, density and temperature; the kinematic viscosity u and thermal 
diffusivity are assumed constant. 

The initial system of equations is of the form 

f(P, p, n = 0. J 

The boundary conditions, which take into account the temperature and velocity jumps are formu- 
lated as follows 

1 au 1 aT 
y=O,h:u=2m,--++m,-L;--,v=O 

L ay L ax 

y=o T- T,,,=2an,-f-g 
L ay' T,,,, = T,(l + a sin kx) 

y=h T-T w =2nn fE 
3L ay' T,, = T,(x) 

n, =&nL 15 L n, =--7r- n3 =$&XL 
128 To 

where Z is a characteristic velocity usually assumed equal to the sound velocity. The case will be 
considered of one of the walls being kept at constant temperature, and the temperature of the other 
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wall varying periodically 

3 

T,, = T,(l $ a sin kx), T,, = Th = const. (3) 

It is known that in uniform heating from below there exists a critical temperature drop AT,, 
When this value is exceeded [4], mechanical equilibrium is disturbed. The conditions of heat 
conduction are changed to free convection. In the case of non-uniform temperature distribution 
at the boundary as shown in [Z], there is no limiting value of the temperature difference, i.e. con- 
vection arises at any small nonuniformiti~ of the temperature. If the maximum temperature difference 
T,, - Tw,, exceeds AK,, the flow structure in a capillary is rather complicated. In the present case 
the study will be confined to the condition when T,,, - TWO < AT,,+, and the amplitude of periodic 
variation a is small. This allows a linearized solution of the problem. The solution of the system of 
equations (l)--(3) is of the form 

T = T,(l + T) P = POU + P) P = POU + P) 

u=o+u u=o+zl > 

where T p, p, U, v are deviations from equilibrium values. 

The linearized basic set of equations is of the form 

(4) 

a’ a’ 0. P,p Ahu. dp=p Au-p T 
aG+z$= ’ ax * ’ dy * * 

su+xAT=O 

x = 2Xx/L ; y = 2ny/L ; A=-&$; 

27v 
P*=---; B, = &PIT, 

P*L T&F; k = $, 

‘r (5) 

I (6) 

The boundary conditions remain the same. 
The solution of the problem stated is 

u = (A$1 + AoZ, - A,23 - A+Z, + AJ, + A,Z5 + A,Z,)sin kx (7) 

ASsin; coskx 

# [SA,Z, + SA,Z, - (@A, + HA,)& - @iFA, + HAS) Z4 

+ {HA, + A$FA,) Z, + (HA, + @A,) Z,] sin kx 

(8) 

19) 
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where 

2, = sinh et Z, = cash (I Z3 = cash ;I]~ sin vi 

Z4 = sinh q2 sin e1 ZS = cash qz cos g, Z6 = sinh f12 cos ql 

8=tan-’ J3 
2[k2h2 + (d/2,] 

F = - ,J$j sin 28 + 2k2 sin 6, 

For easy analysis of the flow pattern the expression for the stream function is used 

e= - ;(A,.& -I” A,Z, - A,Z, - -434 + A ,Z, + A4Z6) cos kx. (11) 

The equations obtained are very bulky. To make the effects of temperature and velocity jumps 
more obvious, consider the limiting case kh @ 1 and kh to % 1. Let kh << 1, then equations (7 j-(1 1) 
can be simplified to 

r = 
( 

2.V’ i- %y4 + $+Y3 + 2~’ + C,y C (12) 

(13) 

+ $ - 2cq + c6 sin kx 1 (14) 

$= -;(&yS+~y4+~y3+~y2+e,y+c6)coskx. (15) 

But ~tegration constants Ci cont~ue to be bulky and are thus not presented here. It should be noted 
that in this limiting case free convection practically does not affect the flow pattern in a pore. The 
motion is completely attributed to the slip and jump of temperature. Now let E = 0, kh $ 1, then the 
solution is of the form 

u = [ay” + yy - (y + 2a)] e-lry cos kx (la) 

v= 
d - k + (y + 2a)y eqkYsinkx (17) 

T= beVkysinkx b = a[1 + 2nn,(l/L)]-’ (W 
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!P = ---i c -$-(yf2u)y I evKYcoskx 

By letting the limit l/h + 0 in (7)-(11) results are obtained corresponding to large gas pressures 
in a capillary. Here motion in the pore results only from the effect of the gravity held and the non- 
~ifo~ity of the temperature dist~bution. In this case the nature of the flow and heat transfer are in 

0 1c 
2 

c 
C 

3 -II lr x 
2 

FIG. 1. Flow pattern in a macrocapiila~ kh $ 1. E = 0 

agreement with free conv~tion in an ordinary dense gas. In another limiting case when the gravity 
field is absent (q = 0) the flow also exists but only when l/it # 0, i.e. at low pressures and rather 
small pores. It appears that the character of the periodicity along the axis x depends neither on 
pore sizes and pressure in a capillary, nor on the presence of the gravity Iield and is attributed only 
to the nonuniformity of the temperature of the pore walls. It is interesting to note that zero stream 
functions correspond to the position of extreme values of temperature. 

Consider the case kh 9 1 in detail. In a capillary the period of temperature variations is very small 
Thus, for example, for a macrocapillary with h N 10-6m,k% 106mand1=2rr/k<2rr.10-6m, 
i.e. it is the most important case when nonuniformity of temperature distribution over the capillary 
wall is seen Let us dwell on an important feature of free convective motion in a macropore, i.e. the 
origin of two flow regions (cells) along the coordinates y. From the expression for the stream function 
tl/ it follows that the position of the boundary between the two regions (zero stream line) is determined 
as follows 

y=_ 2+x ( > I<() II x 
(r’ a 

> 2. 
u 

cm 
It is not difficult to explain which factor, the gravity field or temperature and velocity jumps, 

affect the flow in the various regions As seen from (20) with weakening gravity field, the boundary 
between the regions is displaced towards large values of y, i.e. the lower near-wall cell occupies the 
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whole capillary volume. Therefore the lower near-wall flow (primary cell) is first of all due to the 
conditions of temperature and velocity jumps, while the flow in the upper cell mainly to free con- 
vection. The minimum value of the gravity field when, at given range of temperature variation and 
for a given liquid, the flow in a pore is divided into two regions is given by 

- 8pik2 

gmin = (kh + 2)/?T,,b’ 
y < 0. 

With an increase in the gravity field the size of the primary cell decreases and tends to zero. 
The size of the primary cell can also be diminished by increasing the amplitude of temperature vari- 
ations b. However at large vaiues of b, firstIy the authors’ expansions may not be justified and, 
secondly, the laminar nature of the flow can be disturbed. In the later ease there exists a critical size 
of both cells for laminar motion. The results obtained make it possible to calculate the effective size 
(from the vjew~int of motion intensity) of a macro~api~~ary. The expression for the effective size 
of the macrocapillary when 1 y/a / % 2 is 

h = 27tl&, n3) 

For air at normal conditions h - low6 m. As the estimations of the velocity show, in such a capillary 
the motion is basically attributed to the effects of slip and temperature jump. Contribution to the 
velocity due to free convection is of similar order of magnitude at l/h - 10e3 m. The velocity is of 
the order 10-4-10-5 m/s if the amplitude of temperature oscillations is of the order of one degree. 

Consider the problem of free convection in a horizontal macrocapillary tilled with electrocon- 
ducting fluid. The vector of permanent magnetic field intensity is parallel to the gravity field. The 
dimensionless form of the basic linarized equations is as follows [S] 

where 

au au +--=o 
Z ay 

?!?+%=o 
ay 

IVT = - EV 
Pr 

(26) 

(27) 
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The boundary conditions for the temperature and velocity remain the same, equations (2). The 
tangential component of the magnetic field at the boundary is continuous. 

It has already been mentioned that the effect of free convection is most important at kh $ 1. 
This is the case to be considered Assume that there is no temperature gradient across the macro- 
pillary E = 0, which allows solution of the energy equation (28) independently of other equations 
in the system (22j-427). Without dwelling on computational details the solution of the system of 
equations is 

u = A e-%lY + B eexZY + Grb e_kY 

M2 1 
cos kx 

Ak Grb 
v= 

-c 

_ e_XlY + fJ e_XZY -ky sin kx 
Xl 

-Qp 1 
gj = [ $ e-xr>’ + t e-x2? + _!?$ e-ky 1 cos kx 

h, = {Ce-“’ - P,,,[*ewXiY + &ewxzy - $$(I - y)eaky]jcoskx 

h, = (Ce-*‘-- kP,[~~e-%lY+ ~e-xzY-~)‘e-k~jsinkx 

T = b eTky cos kx 

x1 = ,/{$(2k2 + M’) + J[$(2k2 + M2)2 - k”]} 

x2 = ,/‘(&2k2 + M2) - J[&(2k2 + IW)~ - k4]j 

where the coefficients A, B, C are found from the boundary conditions 

A=; B=; C=; 

A=+ (I +2nn,$“2) -3 +?n?+J 

+--J- 
x2 ( 

I Grbk 
- $ + 27Vt, - --Znn,Etbk)-~(1+2nn,~x,) 

LW 

c&g 1+2nn,;x* 
( ) ( 

+ _Grb+2xn --- E Grbk 

M2 ‘L M2 
27m2E; bk 

> 
_fE_ 
Xl 

1 f 274x,, 1 + 274x,, 
Grb 1 Grbk 

- z + 2nn, -- - 
LM2 

2nn, h Ebk, 

as=;, 
k Grb 

-t --, 
3c2 h4= 

kf’m kpm 

--iy-p’ 2’ 
0 

311 x2 
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Consider the magnetic field effect on the flow structure in a macrocapillary in two limited cases 
of small and large Hartman numbers M. 

For small M within o(W) the velocity components and the stream functions may be presented 
in the form 

zy4 - &4ak2 f 2ak + k2y)y3 f ak2 + k(2a + ky) + 9 (2k + 1) yz 1 L 
+[2~~2k+l)-k{a+k~)]y-~a-3k~+~-~+~ 

As was expected the sign of the velocity variation under the action of a magnetic field is negative, 
i.e. the velocity decreases with an increasing magnetic field. For the case of small M the displacement 

FIG. 2. velocity 
profile in a vertical macro- 
capillary; - - - - - velocity 
profile in a vertical channel. 

of the boundary between two flow regions due to the magnetic field is obtained when the stream 
function is equal to zero. From the expression 

it is seen that since the sign of the term including M2 is negative, the boundary between the cells 
is displaced towards the wall. 
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At large Hartman numbers a noticeable redistribution of the velocity components due to Archi- 
medean forces and slip conditions (2) takes place. It is interesting to note that free-convective 
motion may be depressed with increase of the Hartman number, while the “proper” motion due 
to the slip conditions cannot. 

So far horizontal macrocapillaries have been discussed. Now consider the peculiarities of the 
flow due to free convection in a vertical macrocapillary. 

Let the macrocapillary walls be parallel to the gravity vector g, i.e. the macrocapillary is placed 
vertically. The wall temperatures are kept constant and different. The capillary is placed in a 
permanent magnetic field H, normal to the walls (H, = H,) Assume that all the values depend 
only on the coordinate X. This agrees with real conditions in the capillary whose width h is much 
less then the height L. The losses due to the Joule heat are neglected The initial one-dimensional 
system is written as follows 

1 d2H, dv 

-2=-x P, dx 

d2T 
- = 0. 
dx2 

In this case the boundary conditions (2) reduce to the following 

x= +l v =&n !!k+ &n 
%ax 

.!~!.!I 
91 ax 

T- T,=24 H, = 0 

(30) 

(311 

(32) 

(33) 

where 

n,=&i n2=&7r n,=*. 

From equation (32) it follows that temperature distribution across the capillary is linear, the 
transverse component of the magnetic field is H, = N,, and pressure P may be a linear function 
of z. Simultaneous solution of equations (30) and (31) yields distribution of the velocity u(x) and 
longitudin~ component of the magnetic field H,(x) 

T = --x - 2nn, k 
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Note that terms of the order (l/h)2 included in the solution (35) (36) need not be taken into account 
since the initial system of equations and boundary conditions is written within the accuracy to (E/h). 

Let us discuss the results obtained. The effect of temperature and velocity jumps on the shape of 
the temperature and velocity profiles are ascertained first From (34) it is clearly seen that the 
temperature gradient aT/ax does not depend on the value of ljh, and the absolute value of the 
temperature increases. In a rarefied gas the shape of the velocity profile changes Thus the coordi- 
nates of the points where the velocity is maximum are displaced in comparison with the case of a 
dense gas. If the wall is hot, they move closer to it, if it is cold they move away from it. The value 
of the displacement 

Axdispl = x,,, (l/h = 0) - xmax (j/h f 0) 

is proportional to the value of l!h 

(37) 

Xmaxl’ - (rij + Znn,;) x,,,,l = + _ hnl;. 

Due to the boundary conditions of slip at the walls the velocity u is equal to fm,(l/h). 
Unlike the case of a dense gas (E/h = O), at zero pressure gradient the flow rate would be different 

from zero. For keeping a zero flow rate, a negative constant pressure gradient should be maintained. 

dp - = 27~ f Gr(n, - n,). 
dz 

Note that the value of the vertical heat flux is independent of slip conditions 

Q = cpp _ih UT dx. 

Let us cite some numerical estimates. Thus at Gr = 103, l/h = 0.01, velocities at the wall u, * 10m4 
m/s, maximum velocity in the region I decreases by the value AVr N 5 per cent, and increases by 

AI’,, k 4 per cent in the region II. 
Now that the effect of temperature and velocity jumps is clarified, let us study the peculiarities 

of convection appearing in a rarefied electrically conducting gas in the presence of a magnetic 
field Since the losses due to the Joule heat are neglected, the temperature profile remains linear 
as in the case without a magnetic field. The velocity profile, however, changes its shape. Thus, in 
the case of small Hartman numbers within O(M*) the velocity may be presented in the form 
u*(x) [l - (M*/6)]? where u*(x) is the velocity distribution in the absence of a magnetic field. 
This means that the characteristic points (position of maximum and zero velocity) have the same 
coordinates, but the absolute values of the velocity decrease. At large M numbers, as is seen from 
(35) the velocity decreases everywhere except in the near-wall region as l/M’. 

In the vicinity of the walls the suppression of convection by the magnetic field decreases due to 
the slip effect and is proportional only to l/M. The velocity at the wall is 

u(x = ~f:l) = 2nn,f$&4cothM - 1). (41) 

y. u 
-x3 + x 

,* = Gr 6- 

1 1 1 
-7Tnn,p2+ j7wl,h 
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It is of interest to note that the magnetic field displaces the zero stream line still further to the 
hot wall. The upflow region contracts It is not difficult to ascertain to what position the maximum 
velocities are being displaced to. By making the velocity component equal to zero, the positions 
of the maximum at large M are determined by the expressions 

X max.1 = -1 + kin 2nn,i 
( ) 

X maxI, = 1 -+ln Znn,f 
( > 

(42) 

Contrary to the case of a dense gas, the distribution of the magnetic field intensity due to free 
convection, as seen from expression (361 becomes asymmetric because of the terms proportional 
to ljh. 

H, - H,(l/h = 0) = 2m, w(x _sgg) (43) 

In small magnetic fields the H, component of the magnetic field H, is determined by the expression 

GrP 
H, = ---!! 

6 
2nn,k(x -x3) 1 

With large magnetic fields H,, free convection is suppressed and the component H, decreases 
within the whole region as l/M’. Note that the temperature jump and slip conditions do not affect 
the mean vertical convective heat flux Q 

Q = cpp _ih VT dx. 

This coincides with the expression for QY obtained in [5]. 
The pressure gradient necessary for keeping the flow rate at zero does not depend on the presence 

of a magnetic field and remains the same (39). 
Thus, in a macrocapillary, the free convection is characterized by some striking peculiarities. 

The velocity profile and distribution of the induced magnetic field component H become asym- 
metric In a macrocapillary the change in the absolute value of the velocity may reach 
in comparison with the velocity in an ordinary slit. 
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APPENDIX 

A, =: A2 =; A3 =; A, = !t! 
A 

A= 

El1 a12 0 0 0 

@21 a22 

agl a32 

a41 a42 

as1 a52 

a61 a62 

B 822 21 

P 832 31 

fi P42 41 

b b52 51 

b b62 61 

Ji is obtained from A, if ith column is substituted by 

all = al2 = 1 

azl = 
2: -nq - n2$S; a22 = 

2; -n,-CostI - n,xH; 
k Pk 

1, e a23 = -sin-; 
k 2 

p21 = ;; 822 = ;cosq; 

10 4: 
p23 = -n,-sin8 - nzpkF; 

k 

aJl = S; a32 = H; 
e 

a33 = n3 - Iz~coszF 
> 

; 

19~~ = -n3&S; 
833 = %F 

a4, = cash A,; cash (&cosi)sin (&sing) 

j341 = sinh A1 ; 
e 

842 = sinh & COS- 

( ) 2 
; fi43 = - sinh(&cosi)sin (,,sini) 

4 1: a51 = -i;smhl, + nIkcoshAI - n,If.Scosh& 
Bk 

0 

P 23 

B 33 

P 43 

B 53 

P 63 

A, =; 
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us2 = - $ Z,(l)sin~ - Z,(l)cos~ ( > + n, $2&(l) - z,(l)] - ~n,[z,(l)H - n;Fz,(ifl 

43 8 
cis3 = k 

( 
Z4(1)cosz + Z,(l)sini 

> 
- n, ~LZdl)cos 0 - Z&)sin O] + f n,@,(l)H - Z,fl)F] 

4 
2 

PSI = -g cash 1, - n, 2 sinh AI - -k n,S sinh A, 
Fk 

BJZ = - 2 Z~(l)~j~~ - Z&)cos~ 
( > 

&4 + n,k[Z3(l)sin@ - Z,( 1) cos s] 

- in,[Z6(1)H - AiZ,(lFJ 

853 = +f (Z,rl, a3si + Z~~l)sin~) - n, z [Z,(l)cos i9 + Z,(l)sin,fI] 

+ + 4%(1)H - Z,(Wl 

&jZ = j$ [Z,(l)H - n;Z,(l)r;l - n3 j$ 

[ 

& cos; ,Z,(l)H - 

- A0 sin i Z,Q)H - 2: 
C 
cos i Z,(l)F + sin i Z,(l)F )I 

B 63 = f$ [-Z,(l)H + z,(l)F] - n3jj$ 

[ 

4,+3(1)H - 

- 10 sin g Z&l)H + ~22: cos 4 Z&)F - Aj sin p Z,jl)F 1 
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SOME PROBLEMS OF FREE CONVECTION IN A MACROCAPILLARY 

Abstract -Solution is given to a number of problems of free convection in incompressible viscous fluid 
m elementary macrocapillaries with non-uniform temperature distribution at the boundary. The lluid 
flow structure and effect of a magnetic field on convection in the caSe of conducting fluid has been studied 
in detail. The influence of macrocapillary properties on the flow structure, rate of convection and tempera- 

ture distribution has been estimated. 

QUELQUES PROBLI?MES DE CONVECTION NATURELLE DANS UN MACROCAPILLAIRE 

RCumGUne solution est don&e g quelques problemes de convection naturelle pour un fluide visqueux 
incompressible dans des macrocapillaires ClCmentaires, avec une distribution de temptrature non uniforme 
g la frontikre. On a ttudi6 en d&ail la structure de I’tcoulement du fluide et l’effet du champ magnttique 
sur la convection dans le cas d’une fluide conducteur. On a estimt. I’influence des proprittbs macrocapil- 

laires sur la structure de I’&oulement, sur la distribution des taux de convection et de tempbrature. 

PROBLEME DER FREIEN KONVEKTION IN MAKROKAPILLAREN 

Zusammenfassung-Es werden Lasungen angegeben fiir eine Reihe von Problemen bei freier Konvektion 
eines inkompressiblen, zlhen Fluids in elementaren Makrokapillaren mit ungleichfijrmiger Temperatur- 
verteilung am Rand Die Struktur der Striimung und der Effekt eines Magnetfeldes auf die Konvektion 
fiir den Fall eines Ieitenden Fluids wurden genau untersucht Der Einfluss der Eigenschaften der Makro- 
kapillare aufdie Struktur der Striimung, der AnteiI der Konvektion und die Temperaturverteilung wurden 

abgeschltzt. 


